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ABSTRACT

Analysts tasked with developing probability density estimates may obtain data in sets of
varying quality and quantity. Often low-fidelity data contaminated with measurement er-
ror, or “noise,” may be abundant, but the cost of obtaining data free of these errors will
limit the amount of high-fidelity data available. In such a scenario, the problem is to iden-
tify an estimate of a probability density function given scarce high-fidelity observations,
knowledge of measurement errors, abundant “noisy” data, and available user knowledge of
the density apart from empirical data. We solve this rich class of deconvolution problems
through constrained optimization with first-order epi-splines, which are used for the first
time to approximate densities to an arbitrarily high level of precision. We limit our scope to
univariate densities where measurement errors are homoscedastic. Demonstrations come
from a benchmark from the literature, historical medical data, and a scenario in uncertainty
quantification in fluid dynamics. Results show that deconvolution via epi-splines is viable,
comparable with a widely available deconvolution method, and shows potential for savings

in resource budgets for data collection.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



Table of Contents

1 Background

1.1
1.2
1.3
1.4

Deconvolution ..
Additive Measurement Model .
Epi-Splines

Overview

2 Methodology

2.1
2.2
2.3
24
2.5

Constrained Optimization Problems .
First-Order Epi-Splines .
Constraints.

Comparisons .

Procedures .

3 Gamma-Benchmark

3.1
3.2
33

Setup .
Objective Criteria .

Numerical Experiments .

4 Biostatistics Data

4.1
4.2
4.3

Deconvolution with R Package decon .

Deconvolution of Systolic Blood Pressure Data Using Epi-Splines .

Comparison of Deconvolution Methods

5 High-Fidelity and Low-Fidelity Simulation Output

5.1
5.2
53
54
5.5

Hydrofoil Concept.

Computation Time.

Comparison of Output Data .

Regression on a Sample for Deconvolution .

Regressions on Partitions of a Sample for Deconvolution

vii

AN N BN -

O N9

13
13

15
15
17
20

25
25
25
28

31
31
32
33
33
35



5.6 Mixture Density Estimates

6 Conclusion

Appendix: Computation

A.1 Convolution Expression.
A.2 Artificial Data

A.3 Hydrofoil Concept.

A.4 Notes on Computation Time .

List of References

Initial Distribution List

viii

38

43

45

45

46

47

47

49

53



List of Figures

Figure 1.1

Figure 2.1

Figure 2.2

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 4.1
Figure 4.2

Figure 4.3

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

Deconvolution . . . . . . . . . . ...

Deconvolution with Epi-Splines . . . . .. ... ... ......

First-Order Epi-Splines . . . . . ... ... ... .. ......

Sums of Gamma and Gaussian Observations . . . . . . . .. ..

Continuous and Unimodal Maximum Likelihood Estimates

Tail Convex and “Smooth” Maximum Likelihood Estimates . . .
The Effect of the Convolution Constraint . . . . . . . . ... ..
Comparison of Objective Functions . . . . . ... ... ... ..

Repeated Trials of Epi-Spline Estimates . . . . . . . ... .. ..

The R package decon Results . . . . . ... ... ... .....
Systolic Blood Pressure Epi-Spline Estimates . . . . . . .. . ..

Deconvolution Method Comparison . . . . . . .. ... ... ..

Hydrofoil Design Concept . . . . . . . ... .. ... ......
Comparison of High-Fidelity and Low-Fidelity Simulation Data .
Kernel Smoothing Estimates . . . . . . ... ... ........
Regression on a Sample for Deconvolution . . . . . ... .. ..
Regressions on Partitions of a Sample for Deconvolution . . . . .
Mixture Density Components . . . . . . . ... ... ......
Mixture and Kernel Estimates . . . . . . ... ... ... ....

Mixture Estimates Generated From Different Partitions . . . . .

X

10

16
18
19
21
22

23

26
28

29

31

32

34

35

36

38

39

41



THIS PAGE INTENTIONALLY LEFT BLANK



List of Tables

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5

Table 4.1
Table 4.2

Table 4.3

Table 5.1
Table 5.2
Table 5.3

Table 5.4

Summary Statistics of Artificial Data . . . . .

Settings for Estimates of Artificial Data . . .

Soft Information on Density for Epi-Spline Estimates . . . . . . .

Error Reduction Due to Increasing Soft Information . . . . . . . .

Error Results for Differing Criteria . . . . . .

Summary Statistics of Systolic Blood Pressure Data . . . . . . . .

Settings for Estimates of Systolic Blood Pressure Data . . . . . .

Soft Information for Systolic Blood Pressure Density . . . . . . .

Single Regression Data . . . . .. ... ...
Partition Regressions . . . . . .. ... ...
Soft Information for Component Density . . .

Computational Expense of Differing Methods

X1

15
17
17
20
21

26
27

27

35
37
37

40



THIS PAGE INTENTIONALLY LEFT BLANK

Xii



List of Acronyms and Abbreviations

D/L
DOD
FT
FFT
FHS
GAMS
iid

Isc
MEP
MEP-E
MLP
MLP-E
MSE

SBP

UQ

drag/lift coefficient

Department of Defense

Fourier Transform

Fast Fourier Transform

Framingham Heart Study

General Algebraic Modeling System
independent and identically distributed

lower semicontinuous

maximum entropy problem

first-order epi-spline maximum entropy problem
maximum log-likelihood problem

first-order epi-spline maximum log-likelihood problem
mean squared error

systolic blood pressure

uncertainty quantification

Xiii



THIS PAGE INTENTIONALLY LEFT BLANK

X1V



Executive Summary

Analysts faced with scarce budgets for experimentation and probability density
estimation must also account for the measurement error, sometimes called “noise,” inherent
in the data they acquire. Additionally, the cost to acquire data and the fidelity of the data
obtained are often positively correlated. Scientists in the Department of Defense (DOD) use
simulations to great effect as a resource saving measure, but simulations can vary widely

in accuracy and computation time.

Our goal is to generate accurate univariate probability density estimates that can
blend high-fidelity and low-fidelity data, account for noise, and make use of all available
information about a given system. With inputs such as prior knowledge of measurement
error, noisy and accurate data, and knowledge of the density apart from empirical observa-
tions (i.e., “soft” information), we address this rich class of deconvolution problems using

constrained optimization with first-order epi-splines.

Density deconvolution reduces the noise inherent in estimates generated from ob-
servations contaminated with errors. Epi-splines have been shown to approximate density
functions to an arbitrarily high level of accuracy. This thesis blends deconvolution and epi-
splines, and is the first to use first-order epi-splines, which allow for closed form solutions
of the convolution integral when errors are homoscedastic. First-order epi-splines also pro-

vide a convenient framework for imposing shape constraints generated by soft information.

We explore three cases to demonstrate our method. First, we show evidence of
the accuracy of epi-spline deconvolution starting from a benchmark in the deconvolution
literature. Second, we show that we can obtain deconvolution results comparable with a
widely available software package. In an uncertainty quantification example from fluid dy-
namics, we produce density estimates blending high-fidelity and low-fidelity data showing
that we can supplement small accurate data sets with abundant noisy data sets to produce
density estimates comparable with those obtained exclusively by abundant accurate data.
The result is that we can achieve dramatic reduction in computational expense with po-
tential for further savings in other applications where the observations in a noisy data set

contain identical and independently distributed errors.
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CHAPTER 1:
Background

Measurement errors are inherent in all empirical data. When measurement errors are sig-
nificant, generating estimates based on contaminated data may lead to poor results. This
measurement error, often referred to as “noise,” may be addressed by the application of a
technique called deconvolution. Figure 1.1 shows a visualization of deconvolution in the

broadest sense.

Figure 1.1: Deconvolution
Noisy

Data

Error
—————

Information

The process known as deconvolution produces an esti-
mate of a true function of interest. Methods and appli-
cations vary widely. Knowledge of errors is not always
assumed.

We demonstrate a new method of deconvolution, that fuses hard data, “soft” in-
formation, and knowledge of the distribution of noise, to generate a probability density
function for a random variable of interest. Hard data include noisy (and possibly some
noise-free) empirical data. “Soft” information is defined as available user-provided sys-
tem knowledge, such as continuity, monotonicity, tail convexity, or bounds on the density.
We limit our scope to the estimation of univariate probability density functions where the
noise is homoscedastic. This process is formulated as a constrained infinite-dimensional

optimization problem, that is solved through an approximation by means of epi-splines.



Several distinct data sets provide opportunities for demonstration.

We continue this chapter with a brief literature review of the topics of decon-
volution, the additive measurement model, and an introduction to the nascent application
of epi-spline technology. The modern applications in the field of deconvolution may be
subdivided, but not limited to, three main categories: signal processing, image processing,
and probability density estimation. Epi-spline technology has also been used in probability
density estimation, but this thesis represents the first use of first-order epi-splines. A quali-
tative overview of these topics is given to the reader in order to understand the significance

of the various techniques.

1.1 Deconvolution
Deconvolution is the process by which we obtain a solution for f in the convolution of f

and g defined as:

(F8))= [ _fle-mg(ar (L)
In Equation (1.1), we say that f and g are convolved. Deconvolution is well-known as an
ill-posed problem and falls into a larger class of inverse problems. For a tutorial review of

the deconvolution problem, see [1].

1.1.1 Signal Processing

The application of deconvolution to gain inference on an input signal from one distorted
by noise or some impulse response has one of its earliest applications in exploratory geo-
physics. In this field, a shot is fired into the ground and echoes as it passes through sedi-
mentary layers of the earth. The echoes of the shot are recorded by a receiver and analyzed

to make predictions about the various underground layers of the earth.

Enders Robinson’s 1954 dissertation, and related paper, explain the use of time
series decomposition of wavelets to extract a filtered time signal [2], [3] and expands on
earlier work in statistics to use Fourier Transform (FT) methods for the analysis of station-
ary time series. These papers predate the use of the term deconvolution to explain such a

process of extracting a time series signal filtered of errors, but they serve as an excellent



introduction to the application of deconvolution in geophysics. Further work on deconvo-

lution in geophyics is given in [4]—[8].

Deconvolution in signal processing is not limited to geophysics. Since the intent
is to extract a more accurate time series signal from a signal convolved with noise, the
applications are vast. A seminal paper on the use of Fourier techniques in deconvolution
for spectroscopy is given in [9]. Further treatment on deconvolution in spectroscopy may
be found in [10]. Deconvolution has also been used widely in pharmacology to understand
the effects of various substances on test subjects [11], [12]. Whereas in geophysics, a shot
may be fired into the ground, in pharmacokinetics, a signal is generated by the intake of a

certain drug.

1.1.2 Blind Deconvolution

Deconvolution refers to the process of recovering an input function or impulse function
given a known output. Deconvolution may be subdivided into two different kinds of prob-
lems: one where the input function is accessible in some form, and one where it is not [13].
The scenario in which the input is unknown is known as blind deconvolution. Blind decon-
volution presents a much more challenging problem than deconvolution in its traditional

form since the input is unknown.

The adjective “blind” in the term blind deconvolution refers to the unknown na-
ture of the input signal. One major application of blind deconvolution algorithms is in
image processing. In this field, an image may be blurred noise taken to be from a point
spread function (i.e., distortion with a mathematical description). To compute the true im-
age, it is necessary to estimate the point spread function. Once an estimate is achieved,
an improved picture follows. The widespread proliferation of digital photography has sig-
nificantly raised the visibility of this field [14]. A thorough review of blind deconvolution
techniques for imagery is given in [14]. Helpful visualizations of the performance of blind

deconvolution techniques are given in [15].



1.1.3 Density Deconvolution

Density deconvolution refers to the application of deconvolution techniques in order to per-
form inference on a density of an input random variable given observations of an output
variable. Density deconvolution is more restrictive than other deconvolution methods; the
estimate of the density function of interest produced by the deconvolution method must ad-
here to axioms of probability such as nonnegativity and integration to one. A deconvolution
method that uses FT may be highly accurate over large portions of the domain, but violate
nonnegativity in the tails. The density estimate must then be amended in order to be an
actual probability density function. In Chapter 2 we demonstrate how an epi-spline frame-
work can use constraints to ensure whatever estimate is found via deconvolution meets the

requirements of a density function.

1.2 Additive Measurement Model

Nonparametric deconvolution problems in statistics often involve density estimation of un-

observed variables in measurement models of the form
Y=X+¢ (1.2)

where the problem is to identify the density of X given n independent and identically dis-
tributed (iid) observations of Y. In this case, each observation of X and € are unknown,
but the density of the errors € may be assumed based on prior knowledge. Such a model
is often described as the additive measurement model [16]. Within such a framework the
literature is often focused on the nature of the error density [17]-[19], as well as rates of
convergence [20]-[22]. For a detailed tutorial on density deconvolution; see [16]. For a

comprehensive treatment of measurement error; see [23].

The R [24] package decon contains an example FT and kernel methods used in
deconvolution [25]. The supporting literature provides a brief survey of fields in which
measurement error may be significant, including medicine, bioinformatics, chemistry, as-
tronomy, and econometrics, as well as an extensive review of kernel based methods and
bandwidth selection methods for several cases. The authors compute density estimates

using the Fast Fourier Transform (FFT) instead of the definitions provided and vastly re-



duce their computation time. Functions included in the R package decon can handle both

Gaussian and Laplacian errors, as well as homoscedastic and heteroscedastic errors [25].

1.3 Epi-Splines

Royset and Wets have addressed the problem of “how to identify a function that best repre-
sents data and also satisfies information-driven constraints” [26] with the use of epi-splines.
These epi-splines are piecewise polynomial functions described by a finite number of pa-
rameters [27]. By partitioning the domain of a function into a finite number of segments,
epi-splines allow for the estimation of a function by selecting certain epi-parameters that
define the estimate of the function in every segment. A solution of a functional identifica-
tion problem generated by epi-splines will contain parameters such as slopes and intercepts
in a first-order epi-spline setup or coefficients of polynomials more generally. Epi-splines
have been used for a growing variety of applications, including financial tools, electricity

demand forecasts, and probability density estimation [26]—[30].

This thesis shows the first computational use of first-order epi-splines. It also
expands upon existing methodology with the addition of a convolution constraint in order
to estimate the density of the input variable, X. First-order epi-splines allow for closed-
form expressions of the convolution integral. These expressions preclude the necessity of
numerical integration and the approximations and increases in computational cost that are
unavoidable with numerical methods. The use of convolution as a constraint is explained
fully in Section 2.3.3.

By combining an objective function such as maximum likelihood with constraints
for convolution and soft information, we can deconvolve a probability density function
generated from noisy data. At a minimum, the estimate of the probability density function
must be entirely nonnegative and integrate to one. Additional user information may include
support, continuity, differentiability, convex tails, among other characteristics. We explain

this process completely in Chapter 2.



1.4 Overview

This thesis shows that constrained optimization using epi-spline technology may be a vi-
able alternative for estimating the density of X in the additive measurement model of Equa-
tion (1.2) with Gaussian noise. One benefit of this approach is that we can use a sequence
of constrained optimization models to combine information gained from both an abundant

and noisy dataset and a scarce but accurate dataset.

We make our methodology explicit in Chapter 2, detailing steps for data pro-
cessing, identifying objective functions, and listing all possible constraints of a given con-
strained optimization problem. In Chapter 3, we apply this method to an artificial data set
of the convolution of a gamma density and Gaussian noise. Next, in Chapter 4, we compare
our method with a widely available method on a medical data set of systolic blood pressure
measurements. Finally, we show how this method may be used to fuse data from high-
fidelity and low-fidelity simulations in an uncertainty quantification (UQ) scenario from

fluid dynamics in Chapter 5. We conclude our findings in Chapter 6.



CHAPTER 2:
Methodology

2.1 Constrained Optimization Problems

We begin from the density estimation method of [27]. We consider an iid sample x, ..., x",
of a random variable X, and a set F' of lower semicontinuous (Isc) functions that are non-
negative, integrate to one, and satisfy soft information about the density. The maximum
log-likelihood problem (MLP) becomes

MLP: max Z log(f(x)) st. fEF (2.1)
i=1

where f satisfies additional criteria such as continuity, unimodality, tail convexity, etc., as

well as a convolution constraint. The maximum entropy problem (MEP) becomes
MEP: m}gx — /f(x) log(f(x))dxs.t. f€F. (2.2)

Given the additive measurement model shown in Equation (1.2), we denote the true density
by fx, a contaminated density by fy, and density of homoscedastic measurement error,
by fe. The goal is to deconvolve the true density fx from the contaminated density fy
given knowledge of f¢ and soft information. We give a visual depiction of this process in

Figure 2.1.

2.2 First-Order Epi-Splines

Following the setup in [26], we define first-order epi-splines. Given a closed interval [/, u]
in R, we impose an evenly spaced mesh m = {my | k=0, 1,...N} where mo = [ and my = u.

An epi-spline density f is given with epi-parameters slope a* and intercept a’(‘) as

flx)= a’é +d*x forxe (my_1,my) (2.3)



and for every x € [, u], has
f(x) :min{ltiir(l)lf(x—l—t), ltij(r)lf(x—t)}. (2.4)

The second condition ensures that the value f(x) is the smaller value of the left and right
limits of the density at x. Figure 2.2 shows an epi-spline of order one on IR, that is piecewise

affine and allows for jumps at mesh points [26].

Epi-splines are dense in the space of Isc functions under the epi-topology [27].
Thus, if the mesh is sufficiently fine, a first-order epi-spline can approximate to an arbi-
trary level of accuracy any lsc function [26]. Constrained optimization via epi-splines is

therefore appropriate for estimation.

Figure 2.1: Deconvolution with Epi-Splines

Soft Information <f>—m

Soft Information

+ <= mm--- X Data
Convolution with fe

Producing a deconvolved density fx requires knowledge of a prior noisy density, fy, soft
information and knowledge of measurement error density. Observations of X are not nec-
essary for estimating fy. They may be used if available.

2.2.1 First-Order Epi-Spline Optimization Problems
For computational purposes, we employ epi-splines to find approximate solutions of the

I ..., x", we use a max-

given optimization problems. In the presence of n observations x
imum log-likelihood objective function to obtain a density fit. Given a set A C R*

of epi-parameters that ensure a resulting epi-spline density is nonnegative, integrates to



one, and satisfies soft information, the first-order epi-spline maximum log-likelihood prob-
lem (MLP-E) becomes

n
MLP-E: maleog(a’(;" —i—ak"x’) st.acACRY, wherek; st x' e (m_1,my)  (2.5)
k

aﬁ,a i=1

1 N

and the solution of epi-parameters a = (a(l), a ,a%, a,... ,dg ,a") satisfies additional criteria
such as constraints described in Section 2.3. We have an objective function that is concave
in the epi-parameter. By the inclusion of the logarithm operator, the domain of the objective

function is restricted to strictly positive values of the density at any interval.

When observations of X are not available, we can use a maximum entropy for-

mulation. The first-order epi-spline maximum entropy problem (MEP-E) takes the form

N omg
MEP-E: max — Z / (ab +d*x)log(ak + d*x)dx s.t. a € A c R?V. (2.6)
k=1 M1

k _k
ag,a

Since the entropy is composed with an affine function, and the density is entirely nonnega-

tive, we have a concave objective function in the epi-parameter.

The density estimate solution of MLP-E or MEP-E, that we denote by fy, is then
found by optimizing over 2N parameters. Though we focus on the fx estimation problem
here, we estimate fy in a similar manner, but without a convolution constraint or knowledge

of measurement error.

2.3 Constraints

Detailed formula for our constraints are given in this section. Integration to one and non-
negativity are required for all densities and are described in 2.3.1 and 2.3.2. Convolution,

described in 2.3.3, is required for the estimate of fy only.



Figure 2.2: First-Order Epi-Splines

mi my ms3 my e my—_1

We show a mesh and epi-spline on R. The epi-spline is defined
by the epi-parameters slope and intercept on each interval. The
value f(x) is the smaller of the left and right limits at each mesh
point.

2.3.1 Integrate to One
Densities must integrate to one. With a first-order epi-spline solution this integration takes

the following form:

N my
Y [ db+atxar=1 27
k=1"Mi-1
It follows that:
N . N ak 5 )
Zao(mk—mkfl)—l—Z?(mk—mk_l) =1 (2.8)
k=1 k=1

is affine in the epi-parameter.

2.3.2 Nonnegativity
By constraining the function to be nonnegative at the endpoints of each interval, we ensure

nonnegativity throughout the domain of the function. With the following pair of inequalities
ab+d\m_ >0 Vk (2.9)

10



ab+d'm >0 vk (2.10)

we obtain halfspaces with respect to the epi-parameters.

2.3.3 Convolution

Recall that in the additive measurement model, the density of the noisy variable, fy, is the
convolution of the density of the true variable, fx, and the measurement error density, fe.

Given a noisy density, fy, and knowledge of f¢, we write the convolution equation as
) = [ felv=fex)dx V. @.11)

Having already computed an estimate fy, we can work to identify an estimate fy such
that fy = ( fx * fe). We consider cases where the noise is Gaussian with known mean and
variance, i and 62, respectively, and fy is approximated via first-order epi-splines. For
computational purposes, we ensure that the right hand side of Equation (2.11) is close to

fy with a tolerance § and the inequality

R N my 1 _( x— )2/262
Fr(y)— / e VTR dk +dx)dx | < 8 (2.12)
Y( ) k;l _— G\/ﬁ ( 0 k)

for a finite number of y values evenly spaced within the interval [mg, my]. With Gaussian
measurement errors, we can obtain the closed form solution of these integrals. A nonzero
0 is meaningful since we are working with estimates fx, fy, and assumed knowledge of

error fg, and there is uncertainty and possible errors in all three of these densities.

2.3.4 Density Continuity

Continuity may be required by the user. To ensure continuity, we set
at +d'm=as +d iy Vk=1,... ,N—1 (2.13)
which is affine with respect to the epi-parameters.
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2.3.5 Non-increasing or Non-decreasing

Soft information may determine that the density of interest is nonincreasing. Since the
density is not necessarily continuous, we use two constraints to establish a non-increasing
function. First, we must have nonpositive derivatives, and secondly, we ensure that the
function evaluated at the upper end of each interval is greater than or equal to the func-
tion evaluated at the lower end of the subsequent interval. We can use the following two
inequalities.

d<0 Vk (2.14)

ag+dmg > a™ +d my vk (2.15)

These result in halfspaces with respect to the epi-parameters. We reverse the inequalities

for non-decreasing estimates.

2.3.6 Unimodal

If soft information indicates the density is unimodal, the user can specify an interval of
inflection points that contains the mode. We can achieve a unimodal estimate by requiring
the function to be nondecreasing to the left of the left inflection point, /; nonincreasing to
the right of the right inflection point Iy, and requiring nonincreasing derivatives between the

inflection points. With first-order epi-splines, five constraints are required for unimodality.

a >0 forall k with my <1y (2.16)

a’é —i—akmk < al(‘)+1 + akak for all k with my, < I, 2.17)
a* > a1l for all k with my > I and my_; <lIy (2.18)
ad* <0 forall k with my_, > Iy (2.19)

ag +d'my > as™ +d"my for all k with my_; > Iy (2.20)

We find that the unimodal constraints are affine.
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2.3.7 Tail Convexity
We can impose tail convexity for a function by ensuring that consecutive slopes are in-
creasing outside of the inflection points. We introduce the following constraints enforced
in addition to continuity:

a <d Vkwithmy <1 (2.21)

d<dl Vkwithmy_ > Iy (2.22)

to ensure convexity in the tails.

2.3.8 Maximum Change in Gradient
Since we have a first-order epi-spline framework, this epi-spline estimate is not differen-
tiable. We can incorporate a certain “smoothness” by introducing a maximum change in
slope, A, where

‘ak—akH‘SA Vk=1,...,N—1. (2.23)

2.4 Comparisons
We describe the method by which we measure the accuracy of our estimates numerically.

When the true density is known a mean squared error (MSE) is computable as

b
MSE = / (fx (%) — fx (x))? fx (x)dx. (2.24)
a
which we integrate numerically via the midpoint rule.

For visual comparisons, we calculate kernel smoothing density estimates on cer-
tain data. Kernel estimates are generated using the standard kernel density estimator in
MATLAB [31], a Gaussian kernel, and the default bandwidth calculation.

2.5 Procedures
We describe procedures for obtaining density estimates. Given an iid sample of Y, we

obtain a solution to MLP-E, fy, imposing constraints according to soft information. From

13



this solution, we record values of fy at evenly spaced intervals for use in the convolution

constraint.

If an iid sample of X is available, we can obtain a solution of MLP-E given soft
information and knowledge of measurement error. If no samples of X are available, we
can obtain fx as the solution to MEP-E. In addition to adhering to constraints imposed
by soft information, MLP-E and MEP-E is constrained in estimates of fx by convolution
as described in Section 2.3.3. Chapter 3 and subsequent chapters will demonstrate how

increasing soft information can improve estimates.
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CHAPTER 3:

Gamma-Benchmark

3.1 Setup

We demonstrate the effectiveness of our model in simulations motivated by test instances
in [32]. We consider an additive measurement model scenario where measurement errors

have a normal density, f¢, and fy is a Gamma density. The convolution of these densities

is fy.

3.1.1 Data and Noise

We generate 5000 samples of a random variable from a Gamma density with a certain

shape, o, and scale, 3, so that

X ~ Gamma(a =5,8=1) 3.1)
and 5000 measurement errors
€~ Normal(u =0,0 =V3.2). (3.2)

Thus we record 5000 observations of ¥ with each observation being the sum of a single
observation of X and a single observation of €. A histogram of the observations of Y is
given in Figure 3.1 and summary statistics for these observations is given in Table 3.1. We
retain no knowledge of X or € observations for density estimation but provide histograms
of X and & for illustrative purposes only in Figure 3.1. Separately, three observations of X

are available for density estimation.

Table 3.1: Summary Statistics of ¥ Observations

Minimum | 1st Quartile | Median | Mean | 3rd Quartile | Maximum
—2.832 2.98 4784 | 4.972 6.731 21.640

15



Figure 3.1: Sums of Gamma and Gaussian Observations
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We generate 5000 observations of Y from the sums of 5000 samples of X and
5000 samples of €. The blue histogram shows the frequency of ¥ and is filled to
indicate the user’s knowledge of these observations. The red and black outlined
histograms show the frequency of the X and € observations, respectively, that are
unknown to the user.

3.1.2 Soft Information

Several items of soft information are available. Some settings we use for density estimation
are the same for all the examples in this chapter and are shown in Table 3.2. The soft

information we introduce incrementally is given in Table 3.3.
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Table 3.2: Settings for Estimates of Artificial Data

Settings
Mesh Cardinality, N = 1000
Support, [mg, my]: [0,23]
Convolution Tolerance, § = 5 x 1073
Convolution Values Checked: 101

Table 3.3: Soft Information on Density for Epi-Spline Estimates

Soft Information
Continuous
Unimodal
Inflection Points, [I.,Iy]: [Y — 6sg,Y + 65g]
Convex Tails
Maximum Change in Gradient, A = .00125

Y and &g represent the sample mean and estimated standard error.

3.2 Objective Criteria
The following sections document the performance of objective functions described in Sec-
tion 2.3 in estimating fy. We use MSE as a metric for accuracy as described in Section 2.4.

To verify our results, we have run a simulation experiment detailed in Section 3.3.

3.2.1 Minimum Convolution Tolerance
Convolution is a constraint in MLP-E and MEP-E, we can also minimize the tolerance 6.
This problem takes the form

mind s.t. a € A C RN (3.3)

a’é,ak

and the terms of the problem follow from Chapter 2. With extremely small values of &
or very large numbers of y values checked, MLP-E and MEP-E become infeasible. By
relaxing the convolution tolerance slightly, we can incorporate the solution of this problem
as a parameter in MLP-E or MEP-E.

3.2.2 Maximum Likelihood Estimation
We describe the results of MLP-E for the estimate of the density fx and denote an optimal

solution to this problem as fy.
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We begin with the settings given in Table 3.2 and impose the continuity con-

straint. The result, fy, appears as a red line in Figure 3.2 and contains several distinct
“spikes.” Given the blue histogram shown in Figure 3.1, the user may reasonably believe
that the underlying density is unimodal, with estimates for inflection points of approxi-
mately one sample standard deviation of Y from the sample mean, Y. When we impose this

constraint, the result improves dramatically as shown in Figure 3.2.

Figure 3.2: Continuous and Unimodal Maximum Likelihood Estimates
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The blue line shows a solution of MLP-E for 5000 observations of Y. The dashed line
shows the density of the Gaussian errors. The black line shows the density calculated
from kernel methods using three observations of X. The dashed green line shows the true
Gamma density. The red line shows the solution of MLP-E given three observations of X
and certain soft information. We begin with continuity on the left and impose the unimodal
constraint on the right. With continuity, MSE = 6.765 x 10~!. The addition of the unimodal

constraint improves the estimate dramatically; MSE = 9.3779 x 1074,

The visual "staircase" effect in Figure 3.2 may incline the user to impose convex-

ity on the tails. We obtain the result of imposing this additional constraint in Figure 3.3,
which still contains a sharp peak caused by a lack of bounds on gradient changes. By im-
posing such a bound, or a certain “smoothness,” in addition to previously given constraints,

fx improves again. We document the numeric results of this evolving soft information in

terms of MSE in Table 3.4.
To demonstrate the impact of the convolution constraint, we compare the same f

of Figure 3.3 with an alternative produced without the convolution constraint. We show this
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comparison in Figure 3.4. With convolution imposed as a constraint, the red line represent-
ing fx has an extended right tail. Without the convolution constraint, the density appears

nearly symmetric, producing a higher density estimate near the mode and eliminating the
extended right tail. We see that the convolution constraint is key for identifying extended

tail behavior.
Figure 3.3: Tail Convex and “Smooth” Maximum Likelihood Estimates
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The blue line shows a solution of MLP-E for 5000 observations of Y. The dashed line
shows the density of the Gaussian errors. The black line shows the density calculated from
kernel methods using three samples of X, shown as green circles. The dashed green line
shows the true Gamma density. The red line shows the solution of MLP-E given three
samples of X and certain soft information. On the left, we have a density estimate that is
continuous, and unimodal with convex tails. MSE = 7.3031 x 10~*. On the right, we add

“smoothness.” MSE = 1.7953 x 104,

3.2.3 Maximum Entropy Estimation
Without samples of X, we can use MEP-E, ensuring “maximum ignorance” in density

estimation. An optimal solution of MEP-E is the most dispersed density possible given fy
(i.e., an optimal solution of MLP-E for 5000 observations of Y), f¢, and soft information.
The orange line in Figure 3.5 shows the result of MEP-E. The dispersion of the density is

evident in the right tail, which becomes apparently uniform and remains nonzero.

The advantage of such a method is clear in non-artificial examples when no high-

fidelity data is available. With artificial data we have the ability to generate samples of X
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and therefore can compare the results of MLP-E, MEP-E, and minimum & for the same
data and soft information. Table 3.5 shows a comparison of MSE and Figure 3.5 shows
a graphical comparison. In a single trial, MEP-E produces the lowest MSE, but we offer
repeated trials in Section 3.3 for further analysis.

Table 3.4: Error Reduction Due to Increasing Soft Information

Soft Information MSE
Nonnegative Support 9.18 x 1072
Nonnegative Support, Continuous 6.765 x 107!
Nonnegative Support, Continuous, Unimodal 9.3779 x 10~
Nonnegative Support, Continuous, Unimodal, Convex Tails 7.3031 x 1074
Nonnegative Support, Continuous, Unimodal, Convex Tails, “Smoothness” || 1.7953 x 1074

The results of MLP-E show how increasing soft information reduces MSE, with the
largest reduction achieved through the addition of the unimodal constraint.

3.3 Numerical Experiments

We show through repeated trials that our results do not appear by chance. We generate 30
pairs of Y and X data sets (i.e., 5000 Y observations and three X observations), and obtain
a solution of MLP-E for each pair. Separately we generate 30 sets of 5000 Y observations
and obtain a solution fy of MEP-E for each trial. The data produced for each replication
of each experiment is unique. We record the MSE of each trial and compute averages of
MSE for both sets of replications. More detailed pseudocode describing the execution of
these replications is available within Algorithm 1 of the Appendix. For all trials in these

experiments we include all the soft information given in Table 3.3.

We present our results in Figure 3.6. Consistent differences between the two
methods become apparent in the right tails. Solutions of MEP-E often remain nonzero
and become apparently uniform in the right tail. Solutions obtained via MLP-E exhibit
more accurate right tail behavior. Soft information ensures that mean MSE for MLP-E and

MEP-E do not vary widely on average.
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Figure 3.4: The Effect of the Convolution Constraint
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The blue line shows a solution of MLP-E for 5000 observations of Y. The dashed line shows
the density of the Gaussian errors. The black line shows the density calculated from kernel

methods using three samples of X, shown as green circles. The dashed green line shows
the true Gamma density. The red line shows the solution of MLP-E given three samples
of X and certain soft information. On the left, we include the convolution constraint, but
on the right, we do not. By removing this constraint, we see that convolution is the key to

right identifying tail behavior.

Table 3.5: Error Results for Differing Criteria

Problem MSE
MLP-E 1.7953 x 10~%
MEP-E 4.1694 x 1073
Minimum Convolution Tolerance || 1.2398 x 10~

MSE is shown for the same data and soft information.
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Figure 3.5: Comparison of Objective Functions
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The black dashed line shows the true density. The blue line shows a solution of MLP-E
given three samples of X, shown as green circles. The green line shows a solution found
by minimizing the convolution tolerance, 6. The orange line is a solution of MEP-E. Since
the observations of X near or below the mode, MLP-E gives the lowest density in the right
tails. The density is most dispersed throughout its support in MEP-E, which creates a near
uniform nonzero right tail. Minimizing convolution tolerance underestimates the density at
the mode.
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Figure 3.6: Repeated Trials of Epi-Spline Estimates
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The solid black lines show solutions of MLP-E for three random samples of X in (a), and
solutions of MEP-E in (b). The dashed lines are solutions of MLP-E for 5000 observations
of Y. The red lines show the true density. Each trial is performed on distinct data sets.
Repeated trials of MLP-E and MEP-E show slight differences in right tail behavior. With
MLP-E, right tails approach zero, while with MEP-E right tails often become nearly uni-
form and nonzero. In (a), average MSE = 9.4 x 1073. In (b), average MSE = 1.14 x 104
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CHAPTER 4:
Biostatistics Data

We now turn to the application of MEP-E on a medical data set and a comparison with
another deconvolution method. Density deconvolution literature is abundant within the
field of biostatistics. Through the R package decon, we have obtained real data on systolic
blood pressure (SBP) from the Framingham Heart Study (FHS) described in [23]. The data

contain homoscedastic measurement errors.

4.1 Deconvolution with R Package decon

The authors of [25] provide explicit instructions to use their deconvolution method for
density estimation. They use FHS data from 1,615 male subjects whose SBP is measured
and recorded twice at a first visit and then again measured and recorded twice at a second

visit eight years later.

They compare the difference of the average SBP measurement at each visit for
each subject and each difference is displayed in a histogram containing 1,615 differences
within Figure 4.1. Measurement errors are assumed to be normally distributed based on
the appearance of this histogram; therefore the differences are used to compute the stan-
dard deviation of measurement errors. The assumption of normality is justified further
within [23].

Their goal is to produce an accurate density of average SBP at the second visit
by accounting for measurement error. The authors perform the deconvolution via a FFT

algorithm, and their results on the SBP data are shown in Figure 4.1.

4.2 Deconvolution of Systolic Blood Pressure Data Using
Epi-Splines
Our goal is to compare the results of MEP-E with the results achieved with decon. By

incorporating estimated measurement error, the empirical data, and soft information, we
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can achieve competitive results. The intent is to show that epi-spline estimates are capable

of deconvolution in a non-artificial example.

Figure 4.1: The R package decon Results
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On the left, we see the histogram of the differences of the average SBP reading at each visit.
On the right, we see the results of deconvolution via decon. The blue dashed line shows a
kernel smoothing density and the black solid line shows the deconvolved estimated density.

4.2.1 Setup

To begin, we relate the terms described in [25] to the additive measurement model of Equa-
tion (1.2). In decon, the numeric vectors containing each subject’s average SBP reading
at the first and second visit are defined as SBP1 and SBP2, respectively. Since the goal
is to deconvolve SBP2, we describe each subject’s second visit average SBP reading as
an observation of Y. Therefore, we have 1,615 observations of Y, and we show summary

statistics in Table 4.1.

Table 4.1: Summary Statistics of SBP2 Observations

Minimum | 1st Quartile | Median | Mean | 3rd Quartile | Maximum
87.5 117.0 126.5 | 130.0 139.5 263.0

No observations of X are available. Following the assumptions in [25] the esti-
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mate of measurement error is given as

& ~ Normal(p = 0,6 = +/.5var(SBP1 — SBP2). (4.1)

We first obtain a solution fy of MLP-E given 1,615 observations of Y. Second,
we use fy and knowledge of measurement error to obtain an optimal solution fy of MEP-E.
Table 4.2 provides the settings that remain unchanged for all estimates and Table 4.3 in-

cludes the soft information we impose incrementally.

Table 4.2: Settings for Estimates of SBP

Settings
Mesh Cardinality, N = 1000
Support, [mg, my]: [80,265]
Convolution Tolerance, § = 2 x 1073
Convolution Values Checked: 101

Table 4.3: Soft Information for Systolic Blood Pressure Density

Soft Information
Continuous
Unimodal
Inflection Points, [I1, Iyy]: [110, 140]
Convex Tails
Maximum Change in Gradient, A = 3.75 x 107>

4.2.2 Evolving Soft Information
We impose soft information in a sequence similar to Chapter 3. In all figures within this
chapter, the blue lines show optimal solutions of MLP-E of the given noisy SBP data and

the red lines show the deconvolved estimate from optimal solutions of MEP-E.

We show the change in density estimates as we increase the soft information
included in our estimate from continuity to unimodality in Figure 4.2. In a continuous es-
timate, we see how MEP-E disperses the density with peaks at the lower and upper bounds
of the support. Again, the effect of imposing the unimodal constraint is dramatic. The

unimodal estimate reduces the density in the tails and increases the density at the mode,
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but produces a “staircase” effect and a sharp peak. As shown in Chapter 3, we can elimi-
nate these effects with the constraints of tail convexity and maximum changes in gradient,

which we denote by A. We include all soft information in Section 4.3.

Figure 4.2: Evolving Soft Information for Systolic Blood Pressure Density
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The blue line is the estimate of the density of SBP readings by from the solution of MLP-E.
The red line is the deconvolved estimate given by the solution of MEP-E. We begin with
continuity on the left and add the unimodal constraint on the right. The sharp peaks of both
estimates show the necessity of imposing a maximum change in gradient.

4.3 Comparison of Deconvolution Methods

With all soft information, the deconvolved epi-spline density is shown in Figure 4.3. Here
we also show the kernel density with a black solid line and the deconvolved estimate from
decon with a black dashed line. We note that decon computes a certain kernel bandwidth
adjustment [25], so that we focus on the differences in the effects of deconvolution by each

method, rather than the differences between corresponding densities.

Both decon and MEP-E reduce the density in the tails and increase the density in
the mode for exactly the same data. These changes in density are precisely those noted in
the explanation of the R package decon in [25]. We see that deconvolution via epi-splines

produces remarkably similar effects.
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Figure 4.3: Deconvolution Method Comparison
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A comparison of our methodology on Systolic Blood Pressure data against a FFT method
in the R package decon is shown. We compare the difference between the black lines from
the decon package and the difference between the epi-spline estimates in blue and red.
Both deconvolved estimates reduce density in tails and increase density at the mode.
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CHAPTER 5:
High-Fidelity and Low-Fidelity Simulation Output

5.1 Hydrofoil Concept

In this chapter we examine an example in UQ from fluid dynamics. We have received a
data set from Dr. S. Brizzolara of the MIT SeaGrant program that contains the output of
high-fidelity and low-fidelity fluid dynamics simulations for a hydrofoil concept displayed
in Figure 5.1. The goal is to produce a method that can reduce the number of high-fidelity
simulations required to produce an estimate of the density of high-fidelity performance
by supplementing a few observations from a high-fidelity data set with many low-fidelity

simulations.

Figure 5.1: Hydrofoil Design Concept

This image represents a design under development for an advanced high-speed hydrofoil.
Fluid Dynamics simulations to compute characteristics such as Drag/Lift vary widely in
fidelity and computational cost. The image and data provided for this experiment come
courtesy of Dr. S. Brizzolara of the MIT SeaGrant program.
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5.2 Computation Time

A discussion of the difference in computation time is helpful to understand the desire to
reduce the number of high-fidelity observations. The simulation calculates the drag/lift
coefficient (D/L) using two differing methods. The high-fidelity method solves using the
Navier-Stokes equations requiring four hours of computation time on eight cores for a
single solution. By contrast, the low-fidelity solve uses the panel method, which only
takes five seconds on one core. The data contain 898 pairs of high-fidelity and low-fidelity

observations of D/L. We compare the data by fidelity in Figure 5.2.

Figure 5.2: Comparison of High-Fidelity and Low-Fidelity Simulation Data
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Each point represents a different hydrofoil shape, for which the drag/lift
coefficient is computed via a high-fidelity simulation and a low-fidelity
simulation. Horizontal and diagonal patterns appear in the scatterplot.
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5.3 Comparison of Output Data

Figure 5.2 shows that there appear to be two underlying relationships between high-fidelity
and low-fidelity data. For much of the data, high-fidelity and low-fidelity results are clearly
positively correlated, but many other points show that high-fidelity D/L is largely un-
changed as low-fidelity D/L is increased. We refer loosely to these two patterns as hor-

izontal and diagonal portions.

We show kernel smoothing density estimates of high-fidelity data and low-fidelity
data in Figure 5.3, computed in a manner described in Section 2.4. The low-fidelity kernel
density is unimodal, but the high-fidelity kernel density is bimodal. Our goal is to identify
the salient characteristics of the high-fidelity density by fusing together few high-fidelity
samples and many low-fidelity samples in the following process, described in further detail

in Algorithm 2 within the Appendix.

5.4 Regression on a Sample for Deconvolution

To relate this UQ scenario to Equation (1.2), we consider high-fidelity Drag/Lift as an
observation of X and a low-fidelity Drag/Lift as an observation of Y. Using regression
we may describe high-fidelity estimates in terms of low-fidelity data. We adopt the linear

regression in the form
X =pBy+BY +¢ (5.1)

and since errors are symmetric, we can write
Po+BY =X +e. (5.2)
We use an affine transformation with the coefficients of regression to obtain a new variable
Y'=Bo+BY (5.3)

so that
Y =X+e. (5.4)

Thus we can use observations of the variable Y’ to obtain a solution fy+ of MLP-E to work

towards a deconvolved solution.
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Figure 5.3: Estimates Obtained by Kernel Smoothing

900

=== | ow Fidelity Kernel Estimate
800 L High Fidelity Kernel Estimate
o Low Fidelity Data
High Fidelity Data
700 |
T
i}
600 |- I
i)
Iy
500 |- '
2 |l
2 (|
[0 l 1
O 400 - |
I 1
B |
300 | | 1
|
[ 1
200 1 |
I
[ |
'
100 | |' \
] 1
' \
0 _'b_' o . : ; :

8 0.085 0.09 0.095 0.1 0.105 0.11
Drag/Lift

Kernel smoothing estimates show the disparity between results of sim-
ulations of differing levels of fidelity. Red points indicate low-fidelity
points, and the dashed-dotted line gives an estimated density given these
low-fidelity points. Green points indicate high-fidelity points, and the
solid line gives an estimated density given the high-fidelity points. Notice
that the solid line is bimodal. High-fidelity outliers are also displayed.

0

We may perform a single regression, naively, on a sample of the data to generate
an estimate of measurement error. That is, from the regression line shown in Figure 5.4, we
obtain a residual standard error 6ggr that we use as the estimate of the standard deviation
of measurement errors. With the coefficients shown in Table 5.1 we transform 700 low-
fidelity observations of Y into observations of Y’, shown by the red points in Figure 5.4.
Additionally, we obtain 10 samples of high-fidelity data, shown by the green points, and
obtain a solution fx of MLP-E, shown by the red line. We compare the result to a kernel
smoothing estimate achieved using 898 samples of high-fidelity data. The estimate fx fails
to capture the bimodal behavior of the density. A more sophisticated approach is required

to obtain a better estimate.
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Figure 5.4: Regression on a Sample for Deconvolution
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On the left, we show a single linear regression on a sample of 100 points. On the right,
we show the kernel smoothing estimated density of 898 high-fidelity points with the black
line. The red line is the deconvolved solution of MLP-E given 700 transformed low-fidelity
points 10 high-fidelity points. Performance of the estimate is significantly altered without
partitioning of the subsample for multiple univariate regressions. The deconvolution causes
the mode of the epi-spline density to fall to the left of the peak kernel smoothing density.

Table 5.1: Single Regression Data

Entire Sample
Intercept, By: 7.982 x 103
Slope, B: 9.473 x 107!
Residual Standard Error, 6ggg: 2.604 x 10~*

5.5 Regressions on Partitions of a Sample for Deconvolu-
tion
Figure 5.5 shows a sample may preserve the horizontal and diagonal patterns discussed
in Section 5.3. Though distinct patterns appear, the 14 points that fall in the intersection
of these patterns present a certain ambiguity. We may assume that all points for which
the high-fidelity D/L falls within a lower bound .0853 and upper bound .0857 belong to a
horizontal portion of the data and the rest in the diagonal pattern. Alternatively, we may
assume that the points that may be described as ambiguous (i.e., those that fall within the
horizontal and diagonal patterns), should be distinct from those clearly in the horizontal

pattern.
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We record a weight p for the number of points in the horizontal portion divided
by the sample size of 100. If ambiguous points are grouped with the other horizontal
points, then 28 points fall in the horizontal pattern of 100 sampled points. Thus, p = .28,
and p = .14 if the ambiguous points are grouped with the diagonal pattern, since 14 points
fall in the ambiguous region. We weight density estimates of the horizontal and diagonal

portions accordingly to produce a mixture.

Figure 5.5: Regressions on Partitions of a Sample for Deconvolution
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We sample 100 points without replacement from the data set containing all high-fidelity
and low-fidelity simulation output. The diagonal and horizontal patterns are clear, but there
is an ambiguous region. The scatterplot on the left visualizes the partition into horizontal
and diagonal sections, with a regression over red and black points, and a separate regres-
sion over the blue points. The bars within the dashed lines of the histogram represent those
points assumed to be in the horizontal pattern.

We compute a linear regression for the horizontal pattern and the diagonal pattern
for each method of partitioning the sample of 100. Two of the four regressions we compute
appear as two intersecting lines in Figure 5.5 given the partition that groups all the ambigu-
ous points together with the horizontal points as described in Figure 5.5. Coefficients 3
and Py, and residual standard errors, 6gsg, for all regressions are given in Table 5.2 and
identified by the groups of points included for the particular regression. Within Figure 5.5
and Table 5.2, the points that clearly fall along a diagonal pattern are described as diagonal
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points, those clearly along the horizontal pattern are called horizontal points, and the points

that do not clearly belong to a particular group are called ambiguous.

Table 5.2: Partition Regressions

Points Included Intercept, B Slope, B GORrsSE
Horizontal and Ambiguous || 8.281 x 1072 | 3.280x 1072 | 1.114x 10~*
Diagonal 3.588 x 1072 1.0006 1.819 x 10~#
Horizontal 8.787 x 1072 | —2.932x 1072 | 8.704 x 10>
Diagonal and Ambiguous || 2.982 x 1073 1.008 1.270 x 104

For both partitions, the horizontal component density fx, we assume to be
Normal(u = Y’,0 = 6gsg), where Y’ and 6y are found through the corresponding regres-
sion on the horizontal portion. We perform no deconvolution on the horizontal component,

but we perform deconvolution on the diagonal component in the following manner.

We obtain 700 observations of Y’ using the coefficients from the diagonal regres-
sion and a solution fy, of MLP-E. From the remaining 98 high-fidelity and low-fidelity
pairs of observations, we sample 10 additional high-fidelity observations without replace-
ment from outside the region containing the horizontal pattern. The 6gsg of the diagonal
regression we use as an estimate of measurement error. For this diagonal portion, with the
given data and soft information for this portion shown in Table 5.3 we obtain a solution fy4
of MLP-E. The result is shown in Figure 5.6.

Table 5.3: Settings and Soft Information for Hydrofoil Data

Estimation Settings
Mesh Cardinality, N = 1000
Support, [my, my]: [.0815,.0885]
Convolution Tolerance, § = 1 x 102
Convolution Values Checked: 11
Continuous
Unimodal
Inflection Points, [I7,Iy]: [.0845,.0855]
Convex Tails

Noticeable differences appear between the two component densities in Figure 5.6.

The density at the mode for the horizontal portion is far greater than the peak density in the
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diagonal component. The deconvolution of the diagonal portion, shown by the red line in
Figure 5.6 reduces the density in the tails and increases the density in the mode, due to the

observations of high-fidelity data points.

Figure 5.6: Mixture Density Components

[——Corridor HF Estimate| — -LF Estimate
&0 - | ——HF Estimate
HF Points

4000 -

3500

700 -
3000

2500 |-

2
‘@
2000 |- &
[}

Density

1500

1000

500 - 100 |-

o . . . . L . . ; 0 1 L 16850 o
0.083 0.0835 0.084 0.0845 0.085 0.0855 0.086 0.0865 0.087 0.083 0.0835 0.084 0.0845 0.085 0.0855 0.086 0.0865 0.087
Drag/Lift Drag/Lift

The left plot shows the assumed normal density for the horizontal portion. On the right, we
have deconvolved a density estimate of the diagonal portion using residual standard error
from regression of the diagonal portion as an estimate of the standard deviation of the noise.
The dashed line shows the result of MLP-E on 700 low-fidelity observations. The red line
shows the deconvolved solution of MLP-E on a sample of 10 high-fidelity observations
displayed as green circles.

5.6 Mixture Density Estimates
Recall that in Section 5.4 we recorded a weighing factor, p, with which to weight the
component densities estimated in Figure 5.6. Now that we have identified the densities

based on the horizontal and diagonal portions of the data the result is that

fx = pfxn+ 0 -p)fxa. (5.5)

We plot the mixture density when p = .28 against the kernel smoothing density based ex-
clusively on high-fidelity data. The result is shown in Figure 5.7. The result is a bimodal
estimate whose modes closely approximate the modes shown in the kernel smoothing esti-

mate.
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In Figure 5.7, we see that the mixture density in red overestimates the higher
mode significantly and we compare mixtures produced through different partitions in Fig-
ure 5.8. We see that the density at the higher mode is reduced at a cost of an increased
density at the lower mode. The sharp peaks in the density may be reduced by imposing

bounds in change of gradients as shown in Chapter 3 and Chapter 4.

Figure 5.7: Mixture and Kernel Estimates

1500
== = = Non-deconvolved Mixture
= Deconvolved Mixture n
= Hi Fidelity Kernel Density
O Low Fidelity Data (Transformed)
High Fidelity Data
1000 |-
2
2
(O]
()]
500 |
0 . DEEE > © O Q0  ( oo
0.082 0.083 0.084 0.085 0.086 0.087 0.088
Drag/Lift

The dashed line shows the mixture density produced without deconvolution in the diagonal
portion. The red line shows the deconvolved mixture density. The black line shows the
kernel smoothing estimate of the high fidelity data. The red samples show observations of
low-fidelity drag/lift transformed by regression. We see that a deconvolved mixture density
captures the bimodal behavior of the data, but overestimates the density in the higher mode.

The difference between the epi-spline mixtures and the kernel smoothing estimate

must be considered in light of the difference in computation time for producing simulation
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results. Table 5.4 shows how much computational expense would be required for each

method of producing an estimate. Given the same number of cores, using an epi-spline

mixture to acquire a density would allow for a reduction in computation time of over 87%.

Table 5.4: Computational Expense of Differing Methods

Method || X Count | Cores | Hours || Y Count | Cores Hours Core-Hours
Kernel 898 8 4 0 1 1.39x 1073 28736
Mixture 110 8 4 898 1 1.39x 1073 3521

An epi-spline mixture using both high-fidelity and low-fidelity data can identify

the characteristics of a bimodal distribution of high-fidelity data. Additionally, using such

a mixture technique can save an enormous amount of computational expense when the

difference in computation time between high and low-fidelity simulations is vast.
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Figure 5.8: Mixture Estimates Generated From Different Partitions
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The red line shows the mixture estimate that results from assuming the ambiguous points of
a sample fall in the horizontal pattern. The blue line shows the mixture estimate that results
from assuming the ambiguous points of a sample fall in the diagonal pattern. The black
line shows the kernel smoothing estimate. The red line overestimates the density of the
higher mode and the blue line overestimates the density of the lower mode. Both capture
the bimodal behavior of the density. The sharp peaks can be eliminated with bounds on

changes in gradient.
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CHAPTER 6:

Conclusion

We have presented a new method of deconvolution using first-order epi-splines. To the
best of the author’s knowledge, no other available deconvolution technique blends multiple
data sets of varying fidelity and incorporates soft information to produce a single density
estimate. All information available should be used for uncertainty quantification, and es-

pecially in deconvolution, since highly accurate data is often extremely scarce.

Initial results are promising for deconvolution via epi-splines. We show highly
accurate results in the Gamma example for a single trial with all soft information included.
Replications show that this level of accuracy is not achieved by chance. The SBP scenario
gives an example where epi-spline deconvolution can produce meaningful results without
any high-fidelity data. Our example with the hydrofoil data shows the potential for epi-
splines to be used in data collection resource decisions. Epi-spline deconvolution provides
an alternative to analyzing the results of high and low fidelity observations in a compart-
mentalized fashion. Provided the user can obtain some knowledge of the accuracy of a low
fidelity data set showing that measurement errors are Gaussian, epi-spline deconvolution
can blend high and low fidelity data sets together for a viable estimate. Regression can

serve as a tool for identifying an estimate of measurement error.

Challenges remain for the development of first-order epi-splines for density es-
timates. Widely available software makes use of automatic bandwidth selection in kernel
smoothing density estimation, but we provide no such tool for selecting a hyperparame-
ter A in the maximum change in gradient constraint described in Section 2.3.8. Similarly,
the convolution constraint of Section 2.3.3 is well defined, but the tolerance and number
of low fidelity density values to compare during deconvolution must be set manually. We
recommend further analysis to obtain a reasonable selection for automatically identifying
a well set 0 before attempting to expand the scope of epi-spline deconvolution to multi-
variate densities or non-Gaussian errors. We remain confident that these challenges can be

overcome, enabling epi-spline deconvolution for further use and widespread distribution.
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APPENDIX: Computation

A.1 Convolution Expression
We can find a closed form solution of the integral in the right hand side of

» Yo 1 *(y*xfﬂ)z/wz ko, k
Hy) = / e ag+a xi)dx Yy (A.1)
y( ) k;l _ G\/ﬁ ( 0 k)

by separating the expression into slope and intercept components and evaluating the inte-

gral over every interval. We expand this integral to

/ A w2t / R e
my_1 OV2T m_1 OV2T

Through a combination of written methods and software such as the MATLAB Symbolic
Toolbox [31] we find the closed form solutions of each addend in Equation (A.2). The

slope component becomes

ak (—i (—my_1 — U —|—y)erf<\/§> + %erf(_mk il +y>

40 G\/§
o _lmn) g (meoun)’ (A.3)
— e 202 + e 202
V2T V2T

N e e e R AN —mk—u+y)
+ Zerf —zerf| —————
2 ( o2 ) 2 ( oV2 )
and the intercept component, notably simpler, becomes
k

ag mk+,u—y> (mk1+l~l—)’))
—lerf| —— | —erf | ——— | |. (A4
> ( ( = o2 :

We use the error function

erf(x) = % /0 Yo ar. (A.5)
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A.2 Artificial Data

First, we generate observations of random variables according to their respective densities
using any capable software program. We store the sum of these two random variables
in a .csv file which we use as input for a General Algebraic Modeling System (GAMS)
program. In MLP-E, we produce an X data set. The GAMS program processes the data
and produces output files which contain optimal solutions. Finally, these files are passed

back to another program which plots the output and computes MSE.

Algorithm 1: Replication of Optimized Epi-Spline Estimates
Result: Mean Epi-Spline Estimate Error
foreach Trial do

Generate 5000 sums of X and € observations;
Record each sum as Y data;
if Using Maximum Likelihood Estimate then Record 3 new X samples;
Input and process data into epi-spline estimating program;
Input soft information for f, and f;;
Solve for fy using MLP-E;
Record value of f;(y) for 101 values of y;
if X data recorded then

‘ Solve for f, using MLP-E;
else
if Maximum Entropy Desired then

‘ Solve for fo usingMEP-E;
else

‘ Solve for f; minimizing convolution tolerance, §;
end
end
Export fy and f, results to post-processing program;
Compute MSE;
end
Compute mean MSE,;
Display estimates and MSE as required;
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A.3 Hydrofoil Concept

We generate a bimodal distribution in the following process. First we sample the data to
identify patterns and establish a partition of the sample. Two univariate regressions provide
information as inputs to produce distinct component densities. Abundant low fidelity data
supplements scarce high-fidelity data for a deconvolved component estimate. The mixture
density produced is comparable to a kernel smoothing estimate of exclusively high-fidelity
data.

Algorithm 2: Developing an Epi-Spline Mixture Density
Result: Mixture Density Estimate
Collect 100 pairs of high-fidelity and low fidelity observations;
Establish interval [a,b] in which horizontal portion falls;
p = number of points for which x € [a,b];
foreach Component c do
‘ Calculate By, B, and o;
end
Set fx; = Normal(u = By + By E(Y),0 = 65,);
Collect 700 low fidelity observations;
Set Y’ = Bog + BaY;
Generate fyd using epi-splines with Y’ observations;
Collect 10 high-fidelity observations X ¢ [a,b|;

Deconvolve fy, using high-fidelity observations and o, to generate fy4;
Ix =pfxn+(1—p)fxas
return fx

A.4 Notes on Computation Time

We solved for all epi-spline estimates on a mid-2012 MacBook Air® laptop with a 1.8 Ghz
Intel Core 15 processor and 4GB 1600 Mhz DDR3 RAM using GAMS and the CONOPT
solver. All solves took less than 1-2 minutes. The numerical experiments of 30 replications

in Section 3.3 took less than 8 minutes each.
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